

Incremental and Adaptive Feature Exploration over Time Series Stream

Jingwei ZUO, Karine ZEITOUNI, Yehia TAHER

2nd Juin, 2022

Seminar with Miners team, LIMOS, UCA

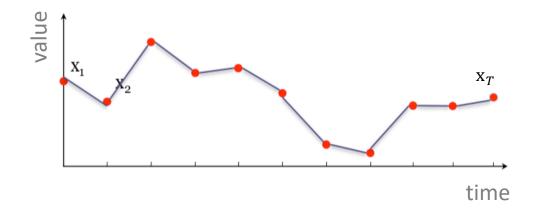
$\circ\,$ Time series

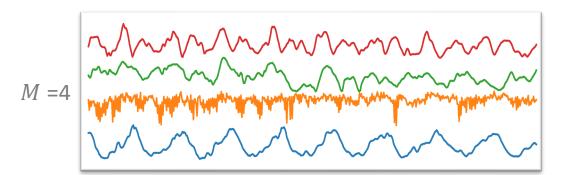
 \circ Sequence of points ordered by time

Univariate Time Series (UTS)

 $x_1, \dots, x_T \in \mathcal{R}^M, M = 1$

$$x_1, \dots, x_T \in \mathcal{R}^M, M > 1$$





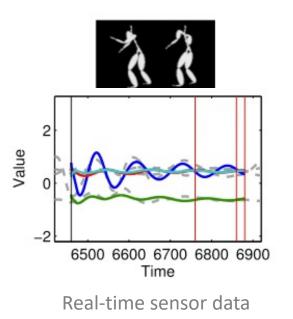
Data from SHL-Huawei dataset

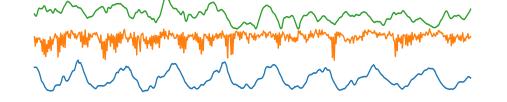
 $\circ\,$ Streaming context:

○ real-valued data flow (e.g., real-time sensor data)

 $\circ\,$ Time series in streaming context

- \circ Historical time series, i.e., offline time series
- $\circ~$ Streaming time series
- $\circ~$ Time series stream





$\circ~$ Streaming time series

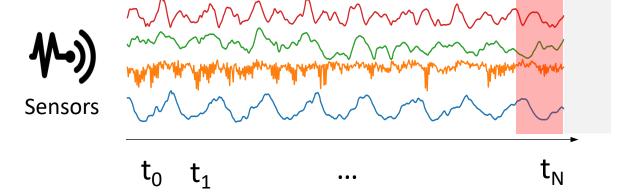
• A continuous input data stream where each i $S=(t_1, t_2, ..., t_N)$, where N is the time of the m

Man Mar Mar Mar Mar

Monitoring Forecasting

$\circ~$ Use cases:

- $\circ~$ Online monitoring
- \circ Real-time forecasting

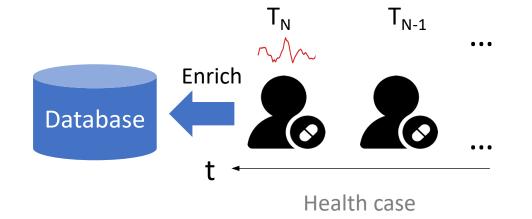


• Time series stream (our context)

• A continuous input data stream where each instance is a time series: $S_{TS} = (T_1, T_2, ..., T_N)$, notice that *N* increases with each new time-tick.

• Use cases:

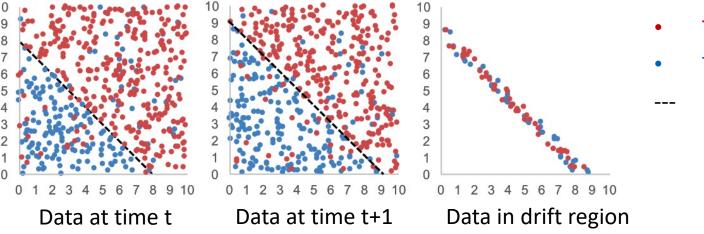
- Medical domain (e.g., ECG)
- Astronomy discovery (e.g., Star Light Curves)



Problem statement

 $\circ~$ Complex temporal relationships in time series stream

- \circ Infinite length
- \circ Feature evolution
- $\circ \quad \text{Concept drift} \\$



- TS class 1
- TS class 2
- --- Class boundary

Objectives

- $\circ~$ TS features in streaming context
 - Interpretability: visually interpretable
 - Incrementality: feature extraction is incremental with new-coming instances [Feature Evolution]
 - Adaptability: adaptive to the evolving data distribution [Concept Drift]
- \circ Learning model
 - Scalability
- Mainly designed for Time Series Classification (TSC) Task
 - **Training online**, classification on-line or off-line

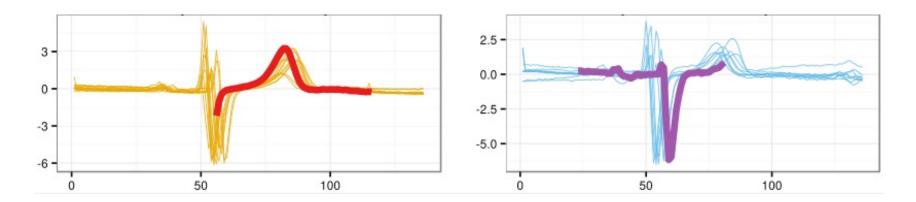
Related work

$\,\circ\,\,$ Time series representation for classification

Feature representations	Classifier example	Related work				
Raw representation	1-NN	1NN-ED, 1NN-DTW and its variants				
Statistic summary	SVM or tree-based	TSF [Deng et al., Inf. Sci. 2013]				
Deep representations	Neural Networks	mWDN [Wang et al., KDD'18], InceptionTime [Fawaz et al., DMKD'19], LSTM-FCN [Farim et al., arXiv'19]				
Feature/model ensembles	Ensemble classifier	BOSS [Schäfer, DMKD'15] and its variants, HIVE-COTE [Lines et al., ICDM'17], TDE [Middlehurst et al., PKDD'20]				
Local patterns	SVM or tree-based	RPM [Wang and Lin, EDBT'16], <u>Shapelet</u> [Ye and Keogh, KDD'09] and its varian				

Why Shapelet¹ in our context?

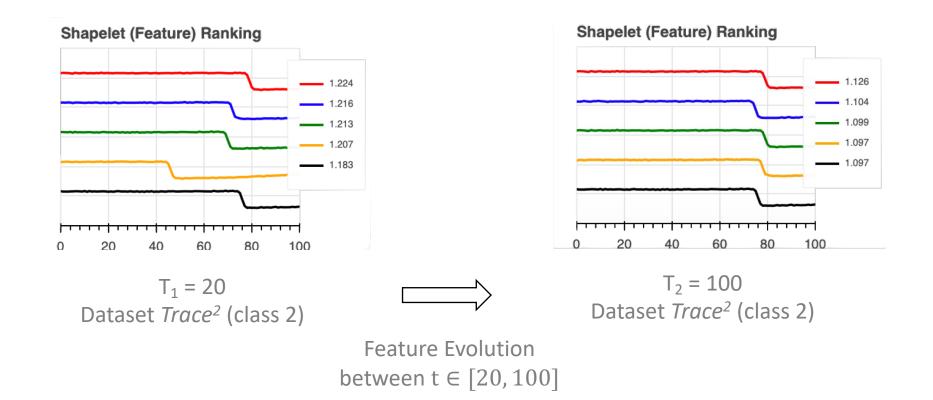
- \circ Definition
 - A representative shape in time series which is capable of distinguishing one class from the others



Most representative Shapelets in two classes from ECGFiveDays [Wang and Lin, EDBT'16]

Why Shapelet¹ in our context?

Explainable for Feature Evolution in time series stream

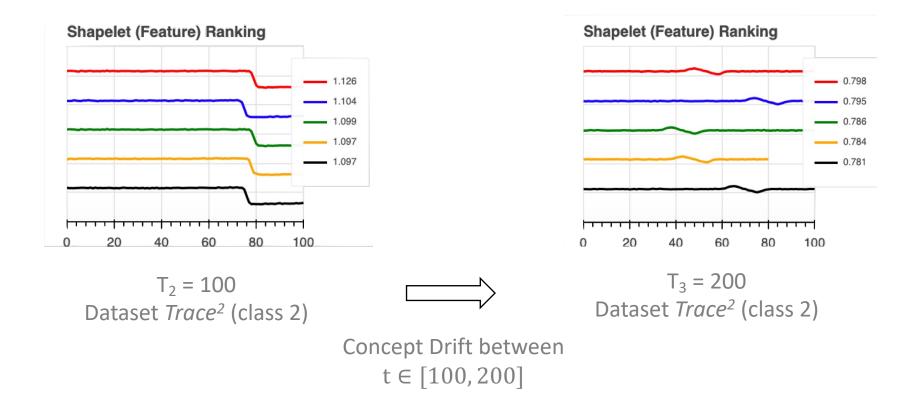


1. L. Ye and E. Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009

2. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Why Shapelet¹ in our context?

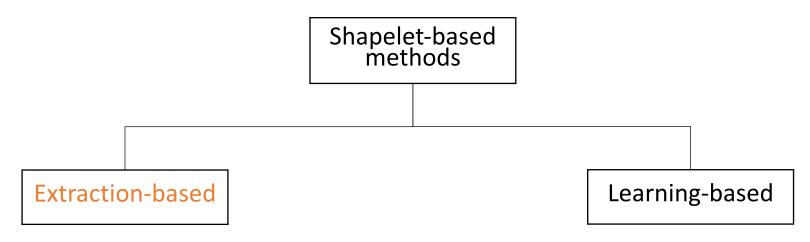
• Explainable for Concept Drift in time series stream



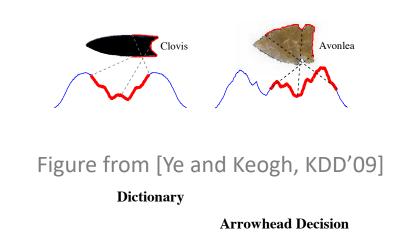
1. L. Ye and E. Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009

2. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

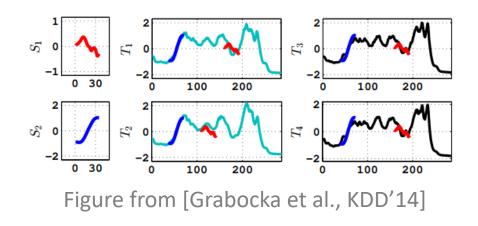
Shapelet-based methods



Highly interpretable (decision-tree)



- End-to-end (gradient-based learning)
- Generally not interpretable



Algorithm for Shapelet Extraction

• Distance Profile & Matrix Profile¹

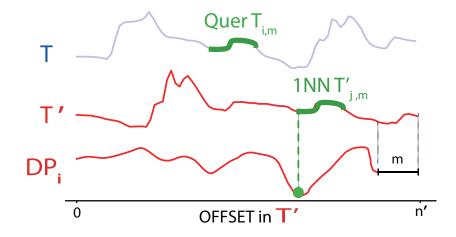


Figure 2.1: Distance Profile between Query $T_{i,m}$ and target time series T', where n' is the length of T'. $DP_{i,j}$ can be considered as a meta TS annotating target T'

Find the Nearest Neighbor of the Query

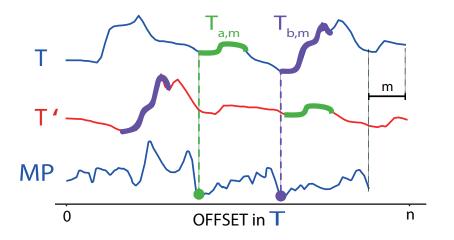


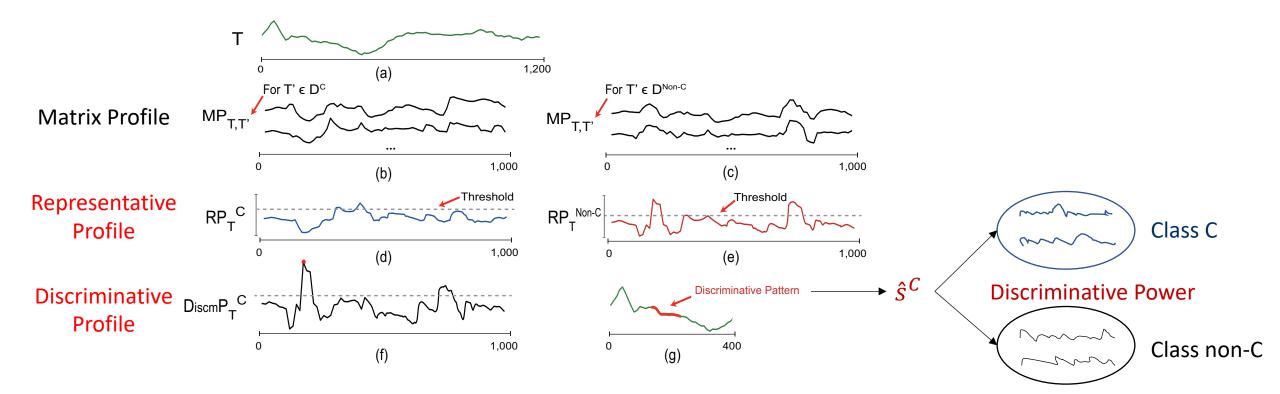
Figure 2.2: Matrix Profile between Source T and Target T', where n is the length of T. Intuitively, MP_i shares the same offset as source T

Find the closest pairs between two TS

1. Chin-Chia Michael Yeh et al. "Matrix Pro le I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets." In Proc. ICDM 2016

Proposal - SMAP

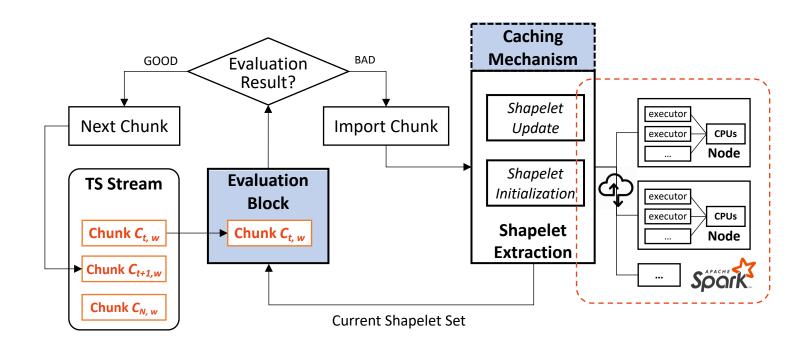
• SMAP¹ : Shapelet Extraction on Matrix Profile



1. J. Zuo, K. Zeitouni and Y. Taher, Exploring interpretable features for large time series with SE4TeC. In Proc. EDBT 2019

Proposal - Incremental version of SMAP

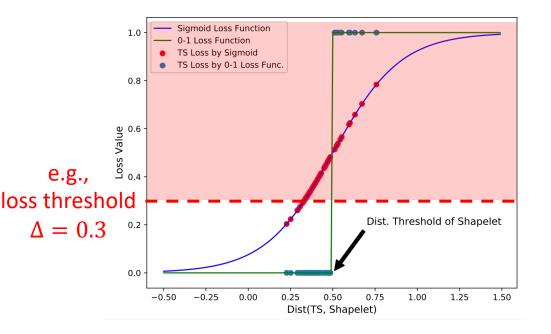
• ISMAP¹: Incremental and adaptive Shapelet Extraction on Matrix Profile



Test-then-Train strategy

ISMAP - Evaluation Block

Shapelet Evaluation



Shapelet Evaluation over newly input TS instances

Concept Drift detection

Consider the evaluation loss as a signal

- Page-Hinkey (PH) Test: initially designed for change point detection in signal processing.
- \circ λ : <u>PH threshold</u> to detect a Concept Drift

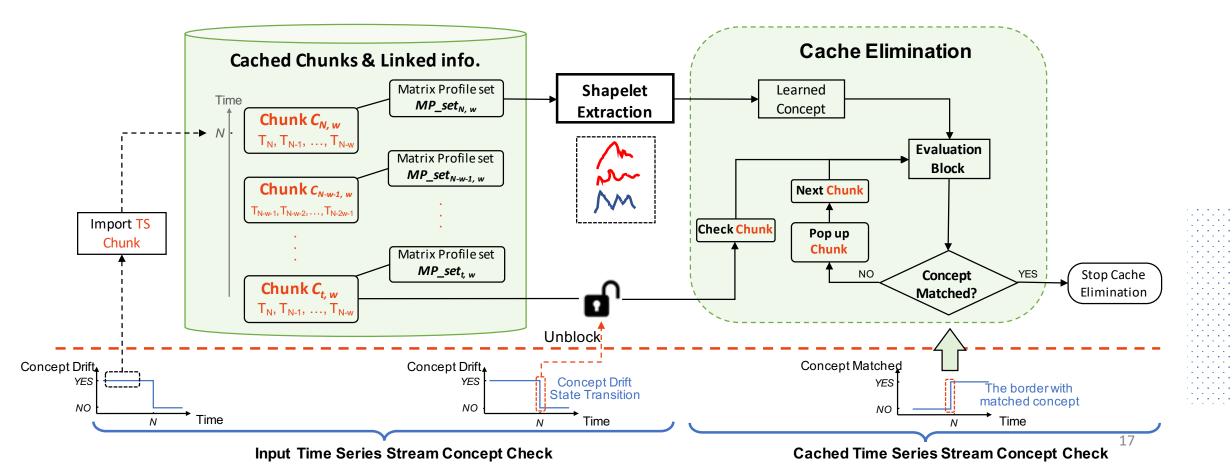
$$\circ \quad Concept \ Drift = \begin{cases} True, \ PH_N \ge \lambda \\ False, \ otherwise \end{cases}$$

ISMAP - Elastic Caching Mechanism

One-pass algorithm

 \circ $\,$ Only conserve the data under the current concept to be learned $\,$

• Conserve the historical Shapelets in the out-of-date concepts (optional)



Experiments

Research Questions:

\circ RQ1. Incremental learning with ISMAP

- Stable-concept time series stream
- To validate the incremental behavior

○ RQ2. Adaptive learning with ISMAP

- Drifting-concept time series stream
- To validate the drift detection behavior and elastic caching mechanism

Datasets:

- o 14 datasets from UCR Archive¹
- → Baselines (Shapelet Tree classifiers):
 - o Information Gain (IG) [Ye and Keogh, KDD'09]
 - Kruskall-Wallis (KW), Mood's Median (MM) [Lines and Bagnall, IDEAL'12]

Datasets:

- o Synthetic *Trace* and *ECG5000* datasets¹:
 - o Randomly put noise for Data Augmentation
 - o Two concept drifts are inserted in each dataset

RQ1. Incremental learning with ISMAP

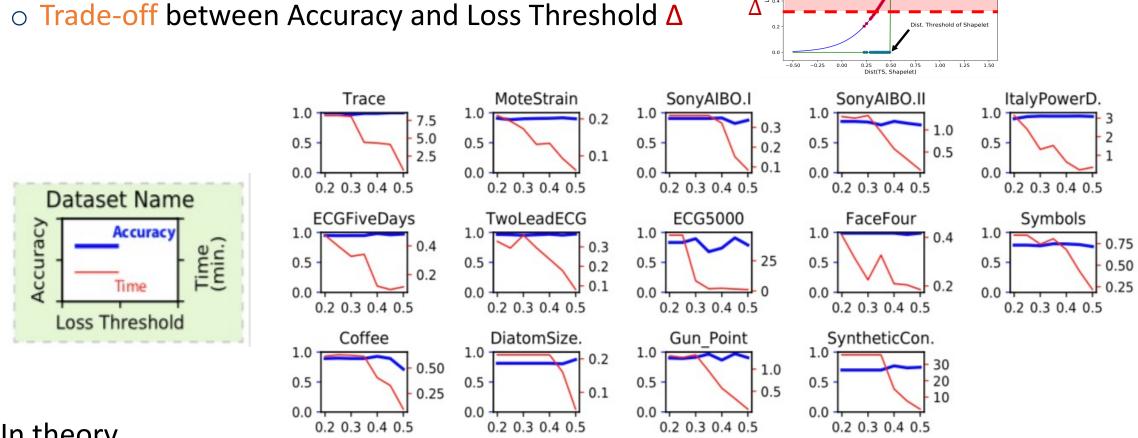
\circ Incremental behavior

- Captured by Compression Ratio $= \frac{N_{import}}{N_{training}}$
- Possible to combine with other TS classifiers:
 - o Shapelet Transform [Lines et al., KDD'12]
 - o HIVE-COTE [Lines et al., ICDM'16]

Type	Name	Train/Test	Class	Length	IG	KW	$\mathbf{M}\mathbf{M}$	$\operatorname{ISMAP}(\operatorname{best})$	Para. (\varDelta)	Comp. Ratio
Simulated	SyntheticControl	300/300	6	60	0.9433	0.9000	0.8133	0.7007	0.35	46.7%
Sensor	Trace	100/100	4	275	0.9800	0.9400	0.9200	1	0.5, 0.45	26.0%
	MoteStrain	20/1252	2	84	0.8251	0.8395	0.8395	0.9169	0.45	60.0%
	SonyAIBO.I	20/601	2	70	0.8453	0.7281	0.7521	0.9151	0.4	95.0%
	SonyAIBO.II	27/953	2	65	0.8457	-	-	0.8583	0.4	63.0%
	ItalyPower.	67/1029	2	24	0.8921	0.9096	0.8678	0.9466	0.45	25.4%
ECG	ECG5000	500/4500	5	140	0.7852	-	-	0.9109	0.4	9.4%
	ECGFiveDays	23/861	2	136	0.7747	0.8721	0.8432	0.9826	0.4	51.2%
	TwoLeadECG	23/1189	2	82	0.8507	0.7538	7657	0.9337	0.5	47.8%
Images	Symbols	25/995	6	398	0.7799	0.5568	0.5799	0.8113	0.35	96.0%
	Coffee	28/28	2	286	0.9643	0.8571	0.8671	0.9286	0.4	78.6%
	FaceFour	24/88	4	350	0.8409	0.4432	0.4205	0.9886	except 0.45	62.5%
	DiatomSize.	16/306	4	345	0.7222	0.6111	0.4608	0.8758	0.5	50.0%
Motion	GunPoint	50/150	2	150	0.8933	0.9400	0.9000	0.9733	0.45	42.0%

1. J. Lines, L. M. Davis, J. Hills, and A. Bagnall, "A shapelet transform for time series classification," in Proc. SIGKDD 2012 ItalyPowerD.

2. J. Lines, S. Taylor, and A. Begnall, "Hive-cota: The hierarchical wate callective of transformation-based ensembles for times for section classification," IEEE ICDM 2016 19



Sigmoid Loss Function
O-1 Loss Function
TS Loss by Sigmoid
TS Loss by 0-1 Loss Func.

Aslue 0.6 Loss Value 0.4

In theory

◦ Loss threshold ↗, the efficiency ↗, the accuracy ↘

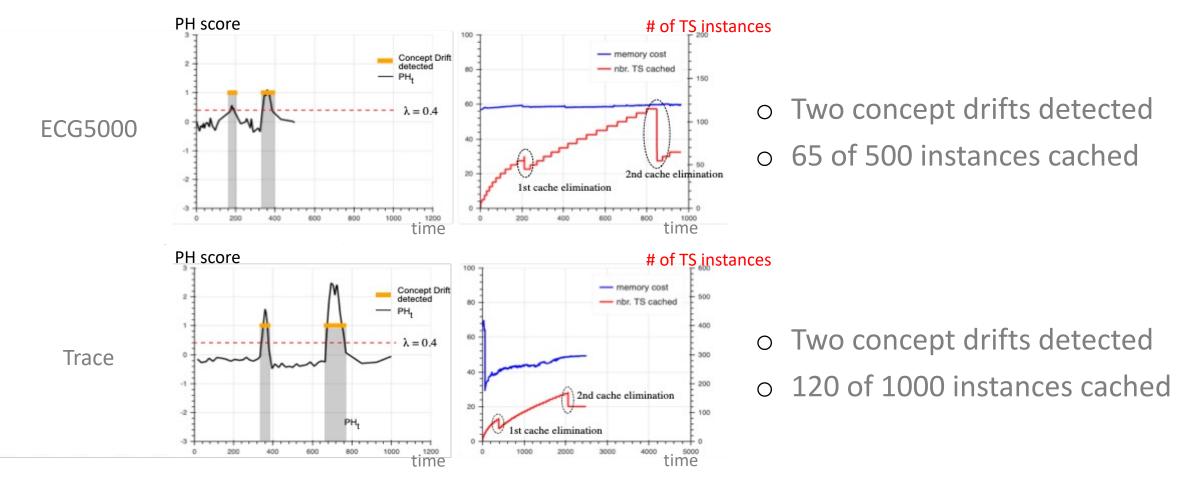
In practice

◦ The highest accuracy falls in the range Δ ∈ [0.35,0.45].

RQ1. Incremental learning with ISMAP

RQ2. Adaptive learning with ISMAP

Concept drift detection & Elastic caching mechanism¹



ISMAP - Conclusion

- Shapelet representation is natively interpretable for explaining the feature evolution and concept drift in the time series stream.
- Our proposal *ISMAP* extracts incremental and adaptive Shapelets from the time series stream
- Our proposed *elastic caching mechanism* handles the infinite time series stream.
- ISMAP is applicable in the scenarios where:
 - New TS instances enrich the learned concept
 - New TS instances may lead to Concept Drift

Github page